【精华】五年级数学说课稿范文汇编8篇
作为一名默默奉献的教育工作者,时常要开展说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。如何把说课稿做到重点突出呢?下面是小编整理的五年级数学说课稿8篇,欢迎阅读与收藏。
五年级数学说课稿 篇1一、教学内容
1、小数乘法的计算方法
2、积的近似值
3、有关小数乘法的两步计算
4、整数乘法运算定律推广到小数
二、教学目标
1、探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2、会用“四舍五入”法截取积是小数的近似值。
3、理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便运算,进一步发展学生的数感。
4、体会小数乘法是解决生产、生活中实际问题的重要工具。
三、编排特点
1、选择“进率是十的常见量”作为学习素材,引入小数乘法的学习。
对于五年级学生的生活经验而言,“元、角、分”“米、分米、厘米”是他们再熟悉不过的计量单位了。根据学生已有的这些知识基础,教材从丰富多彩的校内外活动中,选择“买风筝”(与元、角有关)、“换玻璃”(与米、分米有关)的活动为背景,引入小数乘法的学习。这样的生活背景,不但能激发童心童趣,而且能促成学生利用元和角之间、米和分米之间的十进关系顺利沟通小数乘法与整数乘法的联系,利于学生将新知纳入到已有的认知系统中。
2、淡化小数乘法意义的教学,突出计算方法的教学。
小数实质上是十进分数,要让学生理解小数乘法的意义,应从分数乘法的意义入手。但考虑到学生已有的知识经验和认知水平,根据小数与整数的密切联系,教材先教学小数乘法,再教学分数乘法。与原通用教材相比,淡化了小数乘法意义的教学,把重点放在计算的算理和方法的总结上,引导学生利用因数的变化引起积的变化规律来解释小数乘法的算理,并由此总结小数乘法的一般方法。
3、应用转化和对比,概括小数乘法的计算方法。
小数的书写方式,进位规则均与整数相同,教材紧扣两者的密切联系,引导学生:
①用转化的方法,将小数乘法转化为整数乘法。
②用对比的方法,处理积中小数点的位置问题。在例3、例4中,均采用对比的方法,让学生分别观察因数和积中小数的位数,找出它们之间的关系,然后利用这一关系,准确找到积中小数点的位置。
③帮助学生按一定顺序概括小数乘法的一般计算方法。例4的教学中,应用合作研讨的方式,引导学生自主地、有序地概括出计算小数乘法的一条清晰的思路:先按整数乘法算出积→再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点→乘得的积的小数位数不够,要在前面用0补足,再点小数点。
四、具体内容
标 题例题安排
小数乘整数例1小数乘整数的引入题
例2小数乘整数的算理及竖式写法
小数乘小数例3小数乘小数的算理及竖式写法
例4总结小数乘法的一般方法
例5倍数是小数的实际问题和乘法验算
积的近似值例6按“四舍五入”法截取积的近似值
连乘、乘加、乘减例7有关小数乘法的两步计算
整数乘法运算定律推广到小数例8整数乘法运算定律推广到小数
应用运算定律进行简便计算
小数乘整数
例1
编排意图:
(1)创设“买风筝”的购物情境,引出“小数乘整数”。
(2)结合具体量(人民币单位),以已有知识和经验解决小数乘整数的问题,为理解“小数乘整数”的算理提供感性支撑。
教学建议:
(1)引导学生提出买风筝计算钱数的问题。
(2)先解决书上女孩想要解决的问题。放手让学生利用自己已有的知识和经验解决,重点说明将元转化为角的方法。
(3)在此基础上,解决其他买风筝的问题。
例2
编排意图:
(1)脱离具体量,直接引出小数乘整数。
(2)用因数与积的变化规律说明将小数乘整数转化为整数乘法的理由。
(3)根据计算结果,说明如果积的小数末尾有0,根据小数的基本性质,用最简方式写出积,积中小数末尾的“0”可去掉。
教学建议:
(1)注意引导学生紧紧抓住例1中的计算经验,特别是将“元”转化为“角”的经验来学习例2。先提出0.72元×5,你会计算吗?再去掉元,提出0.72×5该怎么计算。
(2)放手让学生应用已有的整数乘法经验自主计算“0.72×5”,列出竖式,并尝试对过程做出合理的解释。
(3)应引导学生小结小数乘整数的竖式计算要点。
①按整数乘法的规则进行;
②处理好积中小数点的位置,因数中有几位小数,积中也应有几位小数;
③算出积以后,应根据
小数的基本性质用最简方式写出积,积中小数末尾的“0”可去掉。
小数乘小数
例3
编写意图:
(1)以给校园宣传栏换玻璃,需要计算长方形玻璃面积引入小数乘小数。贴近学生的生活,引出小数乘小数学生易于理解。
(2)有例2的计算经验,这里学生容易想到把第二个因数也转化为整数,即将小数乘法转化为整数乘法来计算,故教材直接写出转化和计算的过程。
(3)注意引导学生归纳因数与积的小数位数之间的关系。
教学建议:
(1)让学生根据图意列出乘法算式。
(2)让学生自主尝试计算1.2×0.8。
(3)组织学生共同研讨1.2×0.8的竖式算法及算理。让学生将有代表性的方法展示出来,并简述其道理。可能有学生将“米”化为“分米”,将小数乘法转化为整数乘法来计算,也可能学生按书上的方法进行计算。教师应引导学生沟通两种方法的联系,以帮助学生理解“1.2×0.8”的算理。
(4)最后组织学生探索因数和积的小数位数之间的关系。
例4
编写意图:
(1)结合例4上面的“做一做”总结小数乘法的计算方法。
(2)分两个层次:
①结合“做一做”第1小题,总结小数乘法的一般计算步骤。
②结合“做一做”第3小题,说明小数乘法的一些难点问题。如,积的小数位数不够,应在前面用0补足。
教学建议:
(1)可按教材的层次结合具体的算式进行总结。
(2)积的末尾是0的情况,也应作为小数乘法的一些难点问题处理。
例5
编写意图:
(1)通过“非洲野 ……此处隐藏13016个字……现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识)
第四层级:概括总结
推导公式让学生可以自己比较准确叙说三角形的面积公式并用字母规范表示。
总体思路:第二环节我设计四个层次的学习活动之间层层递进、环环相扣,遵循了学习的基本规律,让学生充分经历了推导过程,也感受到一次有意义的探究性学习。
巩固理解
实践应用
结合课本中的3
类题型分层次进行练习,达到学生理解巩固会应用的学习目标。结合演示板书过程,引导学生规范书写的习惯。
课堂总结
回扣目标
从学生谈谈学习本节课有哪些收获说起,提高对数学的认识层次。让学生从学习活动中认识到数学思想和学数学意义:第一三角形→平行四边形认识到重要的转化思想,第二从红领巾大小→三角形面积公式→计算红领巾面积,帮助学生认识数学源于生活用于生活的学习观。
五 说教学反思
从目标完成情况、教学法转变、信息技术应用等方面进行反思,便于更好开展课堂教学。
以上是我对本节课的说课内容,不足之处敬请指正。谢谢。
五年级数学说课稿 篇8一、 教材分析:
1、知识内容:分数与小数的互化
2、教材的地位和作用: 本课教学是学生在学习了分数的加减乘除混合运算后,而对于分数与小数的混合运算该如何做呢?因而必须要全都是小数或全都是分数这样才能进行计算。这节课就在这基础上进行的,目的是使学生掌握分数化成小数的方法以及小数化成分数的方法,也让学生总结并掌握能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。这样就为今后学习分数与小数的混合运算打下良好的基础。在本节课的教学中,体现了数学知识的内在联系,让学生从已有的知识背景出发,通过习题练习、自主探索、合作交流等方式积极探索分数与小数互化的规律。
3、教学目标:
(1)知识目标:
①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。
②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。
(2)能力目标:
在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。
(3)情感目标:
在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。
教学重点:
分数与小数互化的方法
教学难点:
能化成有限小数的分数的特点。
二、 教学分析:
根据本节教材特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,通过“观图设疑,提出问题,自主探究,总结规律,形成概念,知识运用”等环节,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、教学思路:
1.通过请同学回答说出九大行星如何比较它们的大小来激发学生兴趣,提出数学问题;
2.结合课堂操练,逐步把握知识的本质,形成认知结构,总结规律。
四、教学过程:
一、观图设疑,提出问题
幻灯片显示出九大行星,请学生说出有哪九大行星?并提出:已知水星、冥王星、月球的直径分别是地球直径的 ,问如何比较它们直径的大小并指出哪个行星是最大的,让学生带着这个问题学习新课,这时学生的兴趣已被调动。他们就能积极自主参与知识的发生、发展、形成的过程,带着问题学习新课。 二、出示课题,自主探究 例1把下列分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。学生完成后,在视频台上展示部分学生写的作业,然后教师请学生看自己的作业的对错,并纠正。
并提问:
(1)把分数化成小数,其结果有几种情况?(启发学生说出有限小数与无限小数)
(2)能化成有限小数的分数有什么特点呢?(学生以小组为单位,讨论并请学生代表回答,教师适时指导。)
三、总结规律、形成概念
通过学生积极讨论,充分调动了学生的积极参与学习,既发挥了学生学习的主动性,又培养了学生的发散性思维,引导学生总结出:有的分数可以化成有限小数,有的分数不可以化成有限小数,请同学们再看一看什么样的分数可以化成有限小数?什么样的分数不可以化成有限小数?启发学生从分母的最小公倍数着手。 最后总结出:一个最简分数,如果分母中只含有素因数2和5,再无其它素因数,那么这个分数就可以化成有限小数,否则就不能化成有限小数。 例题2,请把下列小数化成分数,说说你是怎样把小数化成分数的? 0.06,0.4,1.8,2.45,1.465, 归纳:(学生为主,教师点拨)
1、原来有几位小数,就在1后面写几个零作分母。原来的小数去掉小数点作分子。
2、小数化成分数后,能约分的要约分。常用的因数是2和5。 对于小数如何化成分数的题目,课前了解到学生在小学时已学过把小数如何化成分数的方法,因而以学生练习为主,加以操练并巩固,有错误的及时纠正。
四、学会运用,巩固新知
例题3,将 ,0.54按从小到大的顺序排列。 此题主要考查学生对今天学过的内容如何应用,是把小数化成分数好还是把分数化成小数比较大小好呢?最后回到今天刚开始的问题能解决吗?哪个行星的直径最大?可以通过什么方法知道?鼓励学生用多种方法比较大小,开拓学生的思路。
反馈练习:
1、将下列小数化成分数:0.48、1.05、3.24 2、将下列分数化成小数:(不能化成有限小数的将其保留三位小数)
五、全课小结:
这节课,通过以上环节的教学设计,既遵循了概念教学的规律,又符合六年级学生的认知特点,指导学生观察、引导概括,获取新知;同时注重培养学生的发散性思维。在教学过程中让学生动口、动脑为主的学习方法,使学生学有兴趣、学有所获。 教学设计说明: 本节课主要是让学生理解分数与小数的互化的方法以及总结出能化成有限小数的最简分数的特点。学会分数与小数互化的方法,为以后学习分数与小数的混合运算作准备。本课首先从问有哪九大行星入手并从数据中如何比较它们的大小,引起学生的好奇和注意,并能主动参与学习活动,在活动中发挥自己的主体作用,也有利于激发学生的学习兴趣,让学生积极参与知识的形成过程。在教学中,教师引导学生以分数和小数互化的方法为出发点,调动学过的有关知识,让学生亲自参与分数与小数互化的推理过程,体验数学知识的联系,并在此基础上,通过观察、讨论,从中发现能化成有限小数最简分数的特点的规律,并运用这些知识来解决多个分数与小数的大小比较问题。在学生参与了分数与小数互化的推理过程,掌握了互化的方法后,重点放在总结能化成有限小数的最简分数的特点上,学生通过练习,归纳总结,提高了学生对知识的掌握水平。培养学生的综合能力。